SOUTHERN IMPLANTS

The Brightest Ideas In Dental Implants

EXTERNAL HEX Product Catalogue Version 7.3
Dear Customers and Colleagues

Today, dental implants have become an indispensable part of dental treatment options. With the globalization of medical infrastructures and higher standards of living, implant applications have rapidly become common.

Southern Implants has been a manufacturer and distributor of dental implants since 1987. Today, the Southern group is recognized as a leading bio-medical engineering entity, with major intellectual property and capabilities in implantable devices, arthroplasties, tissue regeneration, stem cells and cryoscience. The top-end professional users, who want more choices, have driven the product range expansion to enormous and exciting heights. Striving for excellence and meeting customer needs has lead to our wide product range characterized by numerous unique and innovative products which include:

- 3 interfaces: External Hex, Internal morse taper/octagon, and Tri-Nex.
- Many products optimized for primary stability and suited for immediate loading.
- The only angled-top tapered screw-form 12°, 24°and 36° Co-Axis implant.
- Implant lengths from 6mm to 20mm and diameters from 2.90mm to 10mm.
- A surface which continues to out-perform that which it is trailed against.
- Color-coded components for easy part recognition.
- 55° Zygomatic implant, optimized for load distribution.
- Compatibility with major brands, giving the patient more options.
- The MAX, wide diameter implant for molar teeth replacement.

Striving for excellence is synonymous with the search to improve. At Southern the development starts with computer simulation and finite element modeling. This is followed by extensive laboratory trials and testing. Finally, clinical research has taken on a new dimension in our overall strategy where our preference is for independent RCTs.

Our sincere thanks to all specialists, dentists and technicians who give continual feedback, suggestions and input. The products here are our interpretation of your needs.

Yours sincerely

Graham Blackbeard
Managing Director
Southern Implants
Contents

Introduction and Welcoming Letter .. Inside
Front Cover

Ø3.25mm IBN & IBNT Implants, Components and Drilling Information ... Page 04
IBN & IBNT Prosthetics Flowchart ... Page 05

Ø3.30mm INPI Implant, Components and Drilling Information .. Page 06
INPI Prosthetics Flowchart & Additional Information ... Page 07

Ø3.75mm & Ø4.00mm IB & IBT and IBPS Implants, Components and Drilling Information Page 08
IB, IBT & IBPS Prosthetics Flowchart .. Page 09

Ø5.00mm BA & BAT Implants, Components and Drilling Information ... Page 10
BA & BAT Prosthetics Flowchart ... Page 11

Ø6.00mm BBB & BBBT Implants, Components and Drilling Information ... Page 12
BBB & BBBT Prosthetics Flowchart ... Page 13

MAX Implant Introduction ... Page 14-15

MAX-7 Implant, Components and Drilling Information ... Page 16
MAX-7 Prosthetic Flowchart .. Page 17

MAX-8 Implant, Components and Drilling Information ... Page 18
MAX-8 Prosthetic Flowchart .. Page 19

MAX-9 Implant, Components and Drilling Information ... Page 20
MAX-9 Prosthetic Flowchart and MAX Tray .. Page 21

Co-Axis Implant Introduction ... Page 22-23

Ø4.00mm IBT 12d Co-Axis Implant, Components and Drilling Information .. Page 24
IBT12d Prosthetic Flowchart .. Page 25

Ø5.00mm BAT 12d & BAT 24d Co-Axis Implants, Components and Drilling Information Page 26
BAT12d and BAT24d Prosthetic Flowchart .. Page 27

Ø5.00mm BAT36d Co-Axis Implants, Components and Drilling Information .. Page 28
BAT36d Prosthetic Flowchart .. Page 29

Ø6.00mm BBBT 12d & BBBT24d Co-Axis Implant, Components and Drilling Information Page 30
BBBT12d and BBBT24d Prosthetic Flowchart .. Page 31

Platform Shifting with Southern Implants Externally Hexed Implants... Page 32

Instrument Trays ... Page 33-35

Southern Screws, Alternative Impression Screws & Drill Kits ... Page 36
Southern’s Enhanced Surface .. Page 37
Precision Attachments & Bars ... Page 38
SFI Bar & Accessories ... Page 39
Cleaning & Sterilization Procedure Guidelines .. Page 40

Certificates, Complimentary Manuals and Labeling Symbols ... Inside
Back Cover

Contact Details (Local and International) .. Back Cover
External Hex Implants

Southern’s range of Externally Hexed Implants are available in diameters 3.25mm, 4.0mm, 5.0mm and 6.0mm. Diameters of 7.00mm, 8.00mm and 9.00mm are also available in the External Hex MAX Implants. Implant lengths vary from 6mm to 20mm and all implants are surface roughened with Southern’s extensively proven and well documented enhanced surface.

The External Hex range has an impressive prosthetic selection to accommodate a vast range of prosthetic requirements that may arise. This, together with our ideal to offer compatibility with other major brands, gives the patient more options of treatment.

The implants are made from ASTM-F67-95 Grade 4 pure titanium, with a tensile strength of 550 MPa. The surface is enhanced with abrasion and chemical conditioning. The surface has been proven by way of extensive animal and clinical trials and has been in use for more than 14 years.
IBN & IBNT Implants

Cover Screw
- SCNU2

Healing Abutments
- TBN Ø3.6 2/3/4/6/8 lengths
- WBN Ø4.5 2/3/4/6 lengths

Diameter 3.25mm Implants and Components

IBN Implants are available in: 8.5, 10, 11.5, 13, 15, & 18 mm. IBN Implants are pre-mounted.

IBNT Implants are available in: 8.5, 10, 11.5, 13, 15 & 18mm. IBNT Implants are pre-mounted.

IBN Straight Site Preparation Sequence

- **Round Burr**
 - Optional
 - D-RB-MS

- **1.2mm Twist**
 - D-12T

- **2mm Twist**
 - D-20T

- **2.5mm Twist**
 - For soft bone
 - D-25T

- **2.85mm Twist**
 - For medium & hard bone
 - D-29T

- **Counter-sink**
 - Optional
 - D-CS-IBN

IBNT Tapered Site Preparation Sequence

1. **D-RB-MS**
2. **D-20T-M15**
3. **D-34TP-13**

Step 1: Pilot Drill to full depth of implant
Step 2: Dedicated Drill to full depth
Step 3: Place Implant

(illustration is for a 13mm implant)

Drill markings are at 7, 10, 13 and 15mm
The Standard Abutment range is also still available. Please refer to CAT-1165 for further information.
INPi Implants

Cover Screw
- SCNP

Healing Abutments
- **TNP**
 - Ø3.6
 - 3/4/6 lengths

Ø3.50mm
Hex 2.39mm
0.70mm
Surface Enhanced
L
Ø3.30mm

INPi Implants are available in:
8.5, 10, 11.5, 13 & 15 mm.
INTERNAL DRIVE ONLY

INPi Drills

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round Burr</td>
<td>D-RB-MS</td>
<td>![Image]</td>
</tr>
<tr>
<td>1.2mm Twist</td>
<td>D-12T</td>
<td>![Image]</td>
</tr>
<tr>
<td>2mm Twist</td>
<td>D-20T</td>
<td>![Image]</td>
</tr>
<tr>
<td>2.5mm Twist</td>
<td>D-25T</td>
<td>![Image]</td>
</tr>
<tr>
<td>2.85mm Twist</td>
<td>D-29T</td>
<td>![Image]</td>
</tr>
<tr>
<td>Counter-sink</td>
<td>D-CS-IBN</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Site Preparation Sequence

1. Pilot Drill to full depth of implant
2. Final Twist Drill to full depth
3. Place Implant

(illustration is for a 13mm implant)
drill markings are at 7, 10, 13 and 15mm
An implant is a means to achieve a prosthetic result.

The INPi (internal drive) implant, although similar to the IBN & IBNT narrow diameter implants, adds another prosthetic option: that of Procera™. It has the “narrow platform” interface and M1.6 prosthetic screws to facilitate this.

In addition to this, it features Southern’s proven rough surface, which has 10 years clinical documentation.
IBS / IBi, IBT / IBTi & IBPS Implants

Cover Screw
- SCU2

Healing Abutments
- TB Ø4.5
 - 2/3/4/5/6/8 lengths
- WB Ø5.5
 - 2/3/4/6 lengths

Two-Part Healing Abutments
- T4B Ø4.5
 - 3/4/6 lengths
- T5B Ø5.5
 - 2/4/6/8/12 lengths

IBS / IBi Implants are available in: 7, 8.5, 10, 11.5, 13, 15, 18 & 20 mm. **IBS Implants are pre-mounted.**

IBT Implants are available in: 6, 8.5, 10, 11.5, 13, 15 & 18 mm. **IBT Implants are pre-mounted.**

IBTi Implants are available in: 10, 11.5, 13 & 15 mm.

Diameter 4.0mm Implants and Components

IBPS Implants are available in: 10, 11.5, 13 & 15mm. **IBPS Implants are pre-mounted.**

IB Straight Site Preparation Sequence

- **Round Burr**
- **2mm Twist**
- **Counter-bore**
- **2.85mm Twist**
- **3mm Twist**
- **3.25mm Twist**
- **Counter-sink**
- **Tap**

- **Sold together as D-IBB20-T Drill Kit**

IBT Tapered Site Preparation Sequence

1. **13 Ø4.5**
2. **D-20T-M15**
3. **D-40TP-13**
4. **D-TAP-IBT**

Step 1: Pilot Drill to full depth of implant
Step 2: Dedicated Drill to full depth
Step 3: Optional - Tap for cortical bone
Step 4: Place Implant

(illustration is for a 13mm implant)

Drill markings are at 7, 10, 13 and 15mm
The Standard Abutment range is also still available. Please refer to CAT-1165 for further information.
BA / BAi & BAT / BATi Implants

Cover Screw
- SCAUS

Healing Abutment
- TBA Ø5.5, 2/3/4/6 lengths
- XBA Ø6.5, 2/3/4/6/8 lengths
- WBA Ø7.5, 2/3/4/6 lengths

Two-Part Healing Abutments
- T5BA Ø5.5, 3/4/8 lengths
- T6BA Ø6.5, 3/4/6/12 lengths
- T7BA Ø7.5, 3/4/6 lengths

BA Implants are available in: 6, 7, 8.5, 10, 11.5, 13, 15 & 18mm.
BA Implants are pre-mounted.

BAi Implants are available in: 7, 8.5, 10, 11.5, 13, 15 & 18mm.

BAT Implants are available in: 6, 8.5, 10, 11.5, 13, 15 & 18mm.
BAT Implants are pre-mounted.

BATi Implants are available in: 10, 11.5, 13, 15 & 18mm.

BA Straight Site Preparation Sequence

- Round Burr
- 2mm Twist
- Counter-bore
- 3mm Twist
- Counter-bore
- 4mm
- 4.3mm
- 4.6mm
- Counter-sink
- Tap

D-RB35-T Drill Kit

BAT Tapered Site Preparation Sequence

Step 1: Pilot Drill to full depth of implant
Step 2: Final Twist Drill to full depth
Step 3: Dedicated Drill to full depth
Step 4: Optional - Tap for cortical bone
Step 5: Place Implant

D-RB-MS D-20T-M15 D-30T-M15 D-50TP-13 D-TAP-BAT

(i Illustration is for a 13mm implant)

Drill markings are at 7, 10, 13 and 15mm
BA & BAT Prosthetic Flowchart

Temps

Impression Copings

Laboratory Analougues

Prosthetic Components

The Standard Abutment range is also still available. Please refer to CAT-1165 for further information.
BBBS / BBBi & BBBT / BBBTi Implants

Cover Screw

SCU6

Healing Abutments

TBBB
Ø6.5
2/3/4/5
lengths

WBBB
Ø7.5
2/3/4/5
lengths

Two-Part Healing Abutments

T6BBB
Ø6.5
3/4/5
lengths

T7BBB
Ø7.5
3/4/5
lengths

BBBS Implants are available in:
7, 8.5, 10, 11.5, 13 & 15mm.
BBBS Implants are pre-mounted.

BBBi Implants are available in:
7, 8.5, 10, 11.5, 13 & 15mm.

BBBT Implants are available in:
6, 8.5, 10, 11.5, 13, 15 & 18mm.
BBBT Implants are pre-mounted.

BBBTi Implants are available in:
10, 11.5, 13 & 15mm.

BBB Straight Site Preparation Sequence

Round Burr
2mm Twist
Counter-bore
3mm Twist
Counter-bore
4mm Twist
Counter-bore
5mm
5.3mm Twist
5.6mm
Tap

D-RB
D-20T
D-CB
D-30T
D-CB-40M
D-40T
D-CB-50M
D-50T
D-S3T
D-56T
D-TAP6-P13

Sold together as D-RBB30-T Drill Kit

BBBT Tapered Site Preparation Sequence

Step 1: Pilot Drill to full depth of implant
Step 2: 3mm Drill to full depth of implant
Step 3: Dedicated Drill to full depth
Step 4: Optional - Tap for cortical bone
Step 5: Place Implant

(illustration is for a 13mm implant)
drill markings are at 7, 10, 13 and 15mm
BBB & BBT Prosthetic Flowchart

Temps

Impression Copings

Laboratory Analogues

Prosthetic Components

The Standard Abutment range is also still available. Please refer to CAT-1165 for further information.
Immediate implant placement into a molar extraction socket.

Background
The immediate placement of a conventional dental implant into a molar extraction socket poses a number of difficulties. Most significantly, the size and shape of the multi-rooted molar socket is not suited to optimal placement of a typical dental implant, often resulting in compromised implant positioning, poor primary stability or the inability to place an implant at all. This may result in the need for a waiting period of 3 to 4 months to allow for healing of the socket prior to attempting implant placement. Often, the healed extraction site presents with reduced bone height, inadequate for implant placement, resulting in the need for bone augmentation procedures, especially in the maxilla. This leads to further lengthening of treatment time with increased cost and complexity. An alternate approach has been to place a 6.00mm diameter implant into one socket of a multi-rooted extraction site, typically the palatal socket of a maxillary molar. Problems associated with the latter approach include adverse biomechanical forces resulting from the implant being off-centre and off-axis to the application of load, poor emergence profile and difficult hygiene maintenance resulting from the unavoidable buccal overhang of the restoration.

The MAX Concept
The concept of the MAX implant provides for a design of implant and a surgical protocol which makes immediate placement of the implant into a multi-rooted molar socket attainable, thus obviating the multiple problems discussed above.

The MAX implant features a body with larger than conventional diameter to fill the molar site and achieve primary stability from engagement of the perimeter bony wall of the specially prepared molar socket. The greater taper of the implant body allows for maximal preservation and engagement of inter-radicular bone within the socket of a molar with divergent roots. In the case of a molar tooth with tapering root form, the implant body has a natural fit to the socket shape. The tapered geometry of the implant allows excellent primary stability to be achieved by the threaded implant.

Surgical protocol
The ability to immediately place a MAX implant into a fresh molar extraction site represents the major advantage of this innovative treatment modality. The modality is, however, critically dependant on the preservation of the perimeter bony walls of the socket at extraction. In the case of a multi-rooted molar tooth, the extraction is best carried out by sectioning the tooth to allow removal of the roots individually, avoiding fracture of the buccal plate. If the crown of the molar is cut off horizontally, the roots can be separated and the inter-radicular bone within the socket can be removed to provide space into which the roots can be elevated. Once the roots are removed, further preparation of the socket is carried out to create a suitable tapered shape to receive the implant.

Due to the highly variable anatomy of molar roots, the operator needs to adapt the method of surgical preparation of the socket according to circumstances. Socket preparation may include all or part of the following sequence:

a. Removal of inter-radicular bone within the socket using surgical burs or Rongeur type instruments, to create a platform for pilot hole preparation.
b. Preparation of a pilot hole in the center of the socket or desired axis of placement of the implant. Pilot hole preparation may include the use of tapered implant drills of 4, 5 or 6 mm diameter.
c. Shaping of the socket using a dedicated osteotome tool designed for the MAX implant which achieves deformation of the bony walls rather than further bone removal.
d. Shaping of the socket using dedicated MAX implant drills.

The threaded MAX implant is screwed into the prepared site to achieve optimal primary stability. It is recommended that bone removed from the socket by the preceding preparation be harvested in a suction trap and utilized to fill any remaining voids around the seated implant. The occurrence of voids is frequent due to the irregular shape of molar sockets.

Restorative Protocol
The restorative interface of the MAX implant features a wide platform and external hex. The implant is restored by “platform switching” i.e. the platform of the restorative component has a smaller diameter than that of the implant platform. Restorative procedures are otherwise similar to those of other externally hexed implants. See flow charts of available restorative options.

Advantages of the MAX protocol
1. Immediate placement of the MAX implant into a molar socket has the following advantages:
 - preservation of alveolar bone
 - avoidance of separate grafting procedures
 - shortened treatment time for molar replacement
 - reduced number of surgical procedures
 - reduced cost and complexity of treatment
2. Excellent primary stability is achieved by the tapered, threaded design engaging perimeter bony walls of the socket.
MAX-7 Implants

Cover Screw

SCAUS

Healing Abutments

TBA
Ø5.5
2/3/4/6
lengths

XBA
Ø6.5
2/3/4/6/8
lengths

WBA
Ø7.5
2/3/4/6
lengths

Two-Part Healing Abutments

T5BA
Ø5.5
3/4/6
lengths

T6BA
Ø6.5
3/4/6/12
lengths

T7BA
Ø7.5
3/4/6
lengths

MAX-7 are pre-mounted and are available in the following lengths:

- 7mm code: MAX-7-7
- 9mm code: MAX-7-9
- 11mm code: MAX-7-11

MAX-7 Drills & Additional Instrumentation

Dedicated Drills

D-70TP-7 / 9 / 11

Dedicated Taps

D-TAP-MAX7-7 / 9 / 11

Profile Gauges

MAX-7-PG-7 / 9 / 11

MAX-ROD

MAX-7 Site Preparation Sequence

1. D-RB-MS
2. D-20T-M15
3. D-30T-M15
4. D-60TP-11
5. D-70TP-11
6. D-TAP-MAX7-11
7. MAX-7-11

Step 1: Pilot Drill to full depth of implant
Step 2: Final Twist Drill to full depth
Step 3: Dedicated Drill to full depth
Step 4: Dedicated Drill to full depth
Step 5: Dedicated Tap for cortical bone
Step 6: Place Implant

(illustration is for a 11mm implant)
MAX-7 Prosthetic Flowchart

Temps Impression Copings Laboratory Analogues Prosthetic Components

SCAU5

MAX-7

SCAU M Pickup

CBA77 Transfer

TBA (pall/1)

TBA (haze/1)

CBA77 Transfer

UCLA Plastic

Gold

Titanium

GSBA2H (Hex)

2 Series Screws

SBA15 (Hex)

SBA17 (Hex)

OR

OR

OR

OR

GSBA7 (Hex)

20° 30°

Supplied with screw

DBA432

PEEK

DBA524

CERAMIC Abutments

CBA7 Pickup

CBA7 Transfer

LSA7

PC07 Plastic

GSCA7 Gold

TESA1 Titanium

1 Series Screws

Compact Conical Abutment

ADAMC

1/2/3/4/5/6

Uses 3 Series Screws

HMCW

HMCCT7

CMC1 Pickup

CMC1 Transfer

LSMCW1

PM0C1

DMC01

TM0C

PAWC60

Passive Abutment

48 Metal

48 Metal

48 Metal

48 Metal

Plastic

Gold

Titanium

15

15

15

15

Shouldered Abutment

DBAN

2/4

Uses 3 Series Screws

P-CAVM840

Plastic

MC-M2 Metal

LT7/00

ISOBAN

SB23BAN1

Waxing device for unit DBAN

Plastic

Notes:
The Standard Abutment range is also still available. Please refer to CAT-1165 for further information.
MAX-8 Implants

Diameter 8.0mm Implants used with diameter 6.0mm Components

Cover Screw
- SCU6

Healing Abutments
- TBBB \(\phi 6.5\) 2/3/4/6 lengths
- WB\(BB\) \(\phi 7.5\) 2/3/4/6 lengths

Two-Part Healing Abutments
- TB\(BB\) \(\phi 6.5\) 3/4/6 lengths
- TB\(BB\) \(\phi 7.5\) 3/4/6 lengths

MAX-8 are pre-mounted and are available in the following lengths:
- 7mm code: MAX-8-7
- 9mm code: MAX-8-9
- 11mm code: MAX-8-11

MAX-8 Drills & Additional Instrumentation

Dedicated Drills
- D-80TP-7 / 9 / 11

Dedicated Taps
- D-TAP-MAX8-7 / 9 / 11

Profile Gauges
- MAX-8-PG-7 / 9 / 11
- MAX-ROD

MAX-8 Site Preparation Sequence

Step 1: Pilot Drill to full depth of implant
Step 2: Final Twist Drill to full depth
Step 3: Dedicated Drill to full depth
Step 4: Dedicated Drill to full depth
Step 5: Dedicated Tap for cortical bone
Step 6: Place Implant

Illustration is for a 11mm implant, drill markings are at 7, 10, 13 and 15mm

Earlier revisions of the MAX drills are 2.4mm longer than the implant. These can easily be identified by the lazer marking on the body of the drill. Current drills are marked on the shank.
MAX-8 Prosthetic Flowchart

Temps	Impression Copings	Laboratory Analogues	Prosthetic Components
SCUU | Narrow Ø6.5 | UCLA Plastic | SBBB 1 (Hex) OR Gold OR Titanium
SCUU | Wide Ø7.5 | TBBB SBBB 5 (Non-Hex) | OR
Indirect |

Conical Abutment | EBBB11d | HBA7 Metal | OR
Use 9 Series Screws

Compact Conical Abutment | AB BBBMC, AB BBBMC 10x14 or AB 30x17-1.5 | CEA7 Transfer | OR
HMCW | OR
1/2/3/4/5.5

Shouldered Abutment | DBBBN | PCAP/W40 Plastic | OR
Use 3 Series Screws

The Standard Abutment range is also available. Please refer to CAT-1165 for further information.
MAX-9 Implants

Cover Screw
SCU7

Healing Abutments
TB9MAX
Ø8.0
4/5.5/7
lengths

Two-Part Healing Abutment
TMAX9
Ø8.0
4/5.5/7
lengths

MAX-9 are pre-mounted and available in the following lengths:
7mm code: MAX-9-7
9mm code: MAX-9-9
11mm code: MAX-9-11

MAX-9 Drills & Additional Instrumentation

Dedicated Drills
D-90TP-7 / 9 / 11

Dedicated Taps
D-TAP-MAX9-7 / 9 / 11

Profile Gauges
MAX-9-PG-7 / 9 / 11
MAX-ROD

MAX-9 Site Preparation Sequence

Step 1: Pilot Drill to full depth of implant
Step 2: Final Twist Drill to full depth
Step 3: Dedicated Drill to full depth
Step 4: Dedicated Drill to full depth
Step 5: Dedicated Tap for cortical bone
Step 6: Place Implant

(illustration is for a 11mm implant)
drill markings are at 7, 10, 13 and 15mm

Earlier revisions of the MAX drills are 2.4mm longer than the implant. These can easily be identified by the lazer marking on the body of the drill. Current drills are marked on the shank.
MAX-9 Prosthetic Flowchart

Temps
- SCL7
- MAX-9

Impression Copings
- CMAX9 Pickup
- TBMAX (2 hex-10)

CMAX9 Transfer
- CMAX8L Pickup (Long)

Laboratory Analogues
- LMAX9
- TCMAEX-10 (Hex)
- TCMAEX-10h (Non-Hex)

Prosthetic Components
- GC-EX-10 (Hex)
- GC-EX-10h (Non-Hex)
- SMAK9 [Hex]

...2 Series Screws

Titanium

Sleeve
- Uses 3 Series Screws

Passive Abutment

MAX Ø10.00mm Implants are also available in lengths 7, 9, 11 and 13mm as “special items”. For more information please contact Southern Implants Head Office.
The Co-Axis implant is indicated for use in situations where the long axis of a conventional implant would not coincide with the long axis of the restoration and would therefore result in a restorative compromise.

The most common example of this is encountered where an implant is placed in the anterior maxilla at a labially inclined angle, as dictated by the anatomy of the alveolus, resulting in the screw access hole of the prosthetic crown passing through the labial face of the crown. The Co-Axis implant effectively solves this problem by having the prosthetic platform and screw hole of the implant tilted at an angle of 12 or 24 degrees to the long axis of the implant. The axis of the retaining screw is therefore also offset within the body of the implant.

The Co-Axis concept can be applied to solve many other situations where inclined placement of implants is either unavoidable or even an advantage. For example where avoidance of anatomical structures dictates (eg maxillary sinus, mental foramen) or where bony anatomy can be maximised by inclined placement of an implant. An elegant and truly innovative solution to a frequent problem in implant dentistry.

Advantages

1. The Co-Axis solution greatly simplifies the restorative treatment of an inclined implant by eliminating the need for angle correcting abutments or custom abutments. This reduces the number and cost of components required, reduces the complexity and cost of laboratory work as well as the number of patient visits required.
2. Esthetic advantages result from having no need for labially placed screw access holes.
3. Avoidance of anatomical structures by inclined implant placement, without incurring prosthetic complications, is made possible by exploiting the Co-Axis concept.
4. The Co-Axis implant allows for maximal utilisation of available bone anatomy and may result in the advantage of being able to use either a longer or larger diameter implant.
5. Screw retained restorations can be used instead of cemented restorations.
6. Immediate loading protocols are greatly facilitated by use of the Co-Axis implant by making screw retained restorations routinely attainable.

Placement

Implant site drilling is done in the conventional manner, using tapered drills, but in such a way that the 12 or 24 degree angle correction that the implant head offers, is exploited. This allows for best utilisation of available bone. The bone preparation is best done to a depth slightly greater than the intended implant length e.g. drill to 15mm for a 13mm implant. This technique will assure full seating of the implant to the desired depth.

The use of a Co-Axis direction indicator in the prepared site after pilot drilling and after final drilling, will allow the operator to visualise the restorative axis of the implant, before committing to implant placement. The implant is mounted on a special fixture mount which compensates for the tilted implant head and thus results in straight line placement of the implant, just as any other fixture mounted implant.

The fixture mount is marked with a clearly visible dimple which is used as a reference of the rotational position of the implant relative to the angle correction i.e. the platform of the implant is angled AWAY FROM the dimple. This means that, in a typical anterior maxillary placement, the dimple should end up being positioned on the mid labial aspect of the site. In the event that the fixture mount and implant need to be reassembled, care must be taken to align the fixture mount dimple with the notch cut into the top of the implant hexagon. This will ensure concentric rotation on the assembly.

The implant should be placed to a depth dictated by a number of factors, including esthetic demand for concealment of the implant collar, thickness of soft tissue and personal preferences of the operator or restorative dentist. Typically, if the broad collar on the labial aspect of the implant is placed to the crest of the labial bone height, it may result in other areas of the collar being sub-crestal. This would be an indication for using a bone mill before seating the preferred abutment.

The Co-Axis implant is specifically designed with a finer thread pitch than most other implants, with the result that a full rotation of the implant results in a depth change of only 0.6mm. This feature makes it easier to achieve the correct positioning of the 12 degree angle (dimple indicator) in combination with the correct depth of placement.
IBT12d Co-Axis Implants

Cover Screw
- SCU2

Healing Abutments
- TB ø4.5
 - 2/3/4/5/6/8 lengths
- WB ø5.5
 - 2/3/4/5 lengths

IBT12d are pre-mounted and are available in the following lengths:

- 8.5mm code: IBT12d-8.5
- 10mm code: IBT12d-10
- 11.5mm code: IBT12d-11.5
- 13mm code: IBT12d-13
- 15mm code: IBT12d-15
- 18mm code: IBT12d-18

IBT12d Additional Instrumentation

Bone Mills
- I-BM-57
- I-BM-67

Direction Indicator
- I-DI-12d

Direction Indicators
- I-DI12d-4T-10
- I-DI12d-4T-13
- I-DI12d-4T-15

IBT12d Site Preparation Sequence

1. Pilot Drill to full depth of implant
2. Dedicated Drill to full depth
3. Optional - Tap for cortical bone
4. Place Implant

(illustration is for a 13mm implant)

Drill markings are at 7, 10, 13 and 15mm
The IBT12d Prosthetic Flowchart

Temps | Impression Copings | Laboratory Analogues | Prosthetic Components

SCU2 | IBT12d

Direct

Infast

Compact Conical Abutment

AHMC2

1/2/3/4/5

HMC | HMC77

4R Meta | 4R MAM

CMC1 Transfer

CMC2 Transfer

LSMC1

PMC1 | GNC1

OR | OR

PM1 | GNC1

Plastic | Gold

TITANIUM Abutments

TIT0 | TIT0

2/1/2/1/2

2 Series Z Screws

CERAMIC Abutments

CZK2 | CZK4

OR | OR

TCB OR (Ceramic) OR (Porcelain)

2 Series Z Screws

AUS2

Brass

PC2 | Plastic

3 Series Z Screws

NITI Abutments

VA0 | VA0

OR | OR

3 Series Z Screws

2 Series Z Screws

PASSIVE Abutment

PMC1

OR

SCANNING Abutment

Uses 3 Series Z Screws

NOTE: The IBT12d product range MUST be used with “Z” range shortened screw prosthetics. The angled head results in a shallower screw site and if used, the longer screw prosthetics will not seat correctly, and can lead to fractured screws

The Standard Abutment range is also still available. Please refer to CAT-1165 for further information.
BAT12d & BAT24d Co-Axis Implants

Cover Screw
- SCAU5

Healing Abutment
- TBA: Ø5.5, 2/3/4/6 lengths
- XBA: Ø6.5, 2/3/4/5/6 lengths
- WBA: Ø7.5, 2/3/4/6 lengths

BAT12d
- Are pre-mounted and are available in the following lengths:
 - 10mm: code: BAT12d-10
 - 11.5mm: code: BAT12d-11.5
 - 13mm: code: BAT12d-13
 - 15mm: code: BAT12d-15
 - 18mm: code: BAT12d-18

BAT24d
- Are pre-mounted and are available in the following lengths:
 - 10mm: code: BAT24d-10
 - 11.5mm: code: BAT24d-11.5
 - 13mm: code: BAT24d-13
 - 15mm: code: BAT24d-15

BAT12d / 24d Additional Instrumentation

Bone Mills
- I-BAM-62
- I-BAM-77

Direction Indicator
- I-DI-12d
- I-DI-24d

Direction Indicators
- I-DI12d-5T-10
- I-DI12d-5T-13
- I-DI12d-5T-15

BAT12d / 24d Site Preparation Sequence

1. D-RB-MS
2. D-20T-M15
3. D-50TP-13
4. D-TAP-BAT

(illustration is for a 13mm implant)

Drill markings are at 7, 10, 13 and 15mm

Step 1: Pilot Drill to full depth of implant
Step 2: Dedicated Drill to full depth
Step 3: Optional - Tap for cortical bone
Step 4: Place Implant
NOTE: 1. Platform Shifting is possible and in some cases the preferred restorative protocol for this implant. For Platform Shifting use the restorative options of the IBT12d (page 25).
2. The BAT12d range can use the same prosthetics as for the BA & BAT Implant range. (See page 11)

This innovative concept was specifically designed with the tilted implant techniques in mind.

By making the angle of the implant head 24d, complicated prosthetic procedures where angled abutments are needed are eliminated. The restorative platform of this implant is Ø5.00, the same as the BA range of implants. Special prosthetics are required, as depicted above, due to the internal thread of the implant being slightly shallower. The Z Series screws must be used.
BAT36d Co-Axis Implants

Cover Screw
SCU2

Healing Abutments
TB Ø4.5 2/3/4/5/6/8 lengths
WB Ø5.5 2/3/4/6 lengths

BAT36d are pre-mounted and are available in the following lengths:

10mm code: BAT36d-10
11.5mm code: BAT36d-11.5
13mm code: BAT36d-13
15mm code: BAT36d-15
18mm code: BAT36d-18

BAT36d Additional Instrumentation
Direction Indicator
I-DI-36d

Please note:
Point 1
This corner of the drill is to be at bone level.

Point 2
This corner of the drill will be subcrestal.

BAT36d Site Preparation Sequence

Step 1: Pilot Drill to full depth of implant
Step 2: Dedicated Drill to full depth
This is a Ø5.1 implant and hence the gold-coloured drill D-52TP-13 is the ideal final drill. However, in soft bone, D-50TP can be used to obtain greater primary stability.

Step 3: Optional - Tap for cortical bone
In hard bone, tapping of the cortical bone is recommended.

Step 4: Place Implant & remove fixture mount
(illustration is for a 13mm implant)
drill markings are at 7, 10, 13 and 15mm
The BAT36d product range MUST be used with "Z" range shortened screw prosthetics. The angled head results in a shallower screw site and if used, the longer screw prosthetics will not seat correctly, and can lead to fractured screws.
BBBT12d & BBBBB24d Co-Axis Implants

Cover Screw

SCU6

Healing Abutments

TBBB

Ø6.5

2/3/4/6

lengths

WBBB

Ø7.5

2/3/4/6

lengths

BBBT12d are pre-mounted and are available in the following lengths:

- 10mm code: BBBBB12d-10
- 11.5mm code: BBBBB12d-11.5
- 13mm code: BBBBB12d-13
- 15mm code: BBBBB12d-15
- 18mm code: BBBBB12d-18

BBBT24d are pre-mounted and are available in the following lengths:

- 10mm code: BBBBB24d-10
- 11.5mm code: BBBBB24d-11.5
- 13mm code: BBBBB24d-13
- 15mm code: BBBBB24d-15

BBBT12d / 24d Additional Instrumentation

Bone Mills

I-BBBM-77

Direction Indicator

I-DI-12d

I-DI-24d

Direction Indicators

I-DI12d-6T-10

I-DI12d-6T-13

I-DI12d-6T-15

BBBT12d / 24d Site Preparation Sequence

1. D-RB-MS
2. D-20T-M15
3. D-30T-M15
4. D-60TP-13
5. BBBBB-TAP-BBBT

Step 1: Pilot Drill to full depth of implant
Step 2: 3mm Drill to full depth of implant
Step 3: Dedicated Drill to full depth
Step 4: Optional - Tap for cortical bone
Step 5: Place Implant

(illustration is for a 13mm implant)
drill markings are at 7, 10, 13 and 15mm
NOTE: 1. The BBBT12d can also use the prosthetics as for the BBB & BBBT Implant range. (See page 13)
2. If Platform Shifting these implants, then use the prosthetic options of the BAT12d / BAT24d as shown on page 27.
Platform Shifting

The platform shifting concept implies the use of prosthetic components having a platform diameter undersized when compared to the diameter of the implant platform. In this way, the prosthetic connection is displaced horizontally inwards from the perimeter of the implant platform, creating an angle or step between the abutment and implant. This concept has been widely published with claims of better bone levels.

Important: For platform shifting to be effective, it is important to carry out the under sizing of the components during all phases of the implant treatment, i.e. from placement of the implant through to final restoration.

The principles and requirements for improved hard and soft tissue response by way of platform shifting are now well established in the literature. Of importance is the establishment of the shifted dimension from the time of implant placement, through all restorative phases.

Platform Shifting with Ø4.0 Externally Hexed Implants

![Diagram of Ø4.0 Implant](image)

Ø4.0

IBPS

The Ø4.0 Implants get restored with Standard Platform Prosthetics as per page 7 to apply platform shifting.

Platform Shifting with Ø5.0 Externally Hexed Implants

![Diagram of Ø5.0 Implant](image)

Ø5.0

BA BAT BAT12d BAT24d

The Ø5.0 Implants get restored with Standard Platform Prosthetics as per page 7 for the BA, BAT and BAT12d implants. The BAT24d gets restored using the Co-Axis Standard Platform Prosthetics as per page 25 to apply platform shifting.

Platform Shifting with Ø6.0 Externally Hexed Implants

![Diagram of Ø6.0 Implant](image)

Ø6.0

BBBS BBBT BBBT12d BBBT24d

The Ø6.0 Implants get restored with Ø5.0 Prosthetics as per page 9 to apply platform shifting. The BBBT24d gets restored using the Co-Axis Ø5.0mm Platform Prosthetics as per page 29 to apply platform shifting.
I-HEX-U

TWIST DRILLS

- D4.0B
- D3.0T
- D2.0T
- D1.0T

ADDITIONAL DRILLS

- Ø4x10
- Ø3.5x13
- Ø4x15

- Ø4x10
- Ø3.5x13
- Ø4x15

- Ø4x10
- Ø3.5x13
- Ø4x15

INSTRUMENTS

- PLACEMENT TOOLS
 - CONNECTOR
 - 1/2 HEX
 - 3/16 HEX

- DIRECTIONS
 - T
 - 45
 - 90

- ADDITIONAL INSTRUMENTS
 - WRENCH
 - OPEN WRENCH
 - DEPTH GAUGE
I-HEX-1

I-DRILL

These trays fit into the I-CASSETTE-2 and are autoclavable. Please see CAT-1039 for sterilizing and cleaning instructions.
These trays fit into the I-CASSETTE-2 and are autoclavable. Please see CAT-1039 for sterilizing and cleaning instructions.
Southern Implants Screws

Series 1 Screws (M1.4)
10-15Ncm
Head Diameter 2.25mm

Series 2Z & 2 Screws (M2)
32-40Ncm
Head Diameter 2.70mm
* = Long Versions Available

Series 3Z & 3 Screws (M2)
32-40Ncm
Head Diameter 2.45mm
* = Long Versions Available

Series 9 & 9Z Screws (M2)
15-20Ncm
Special head for use with Angled Conical and Compact Conical Abutments

Blackened Brass Screws
For Laboratory Use Only

Please Note: Series 2Z Screws have two grooves on the head for easy recognition.

Alternative Impression Screws

CBU-SS (Short) CBU-SL (Long)
For use with impression taking in the event that a shorter or longer screw is required. These screws have slot & hex drives

PM22
Access hole maintainer is used with fixture mounts for impression taking

Drill Kits

D-RB20-T Drill Kit (Sold Together)
D-RB20-MS D-20T

D-RB30-T Drill Kit (Sold Together)
D-RB D-20T D-CB D-30T
Southern’s Enhanced Surface

The Southern enhanced surface is not a “coating”, it is an **abraded rough surface of Rutile Titanium**. This is the same dense form of titanium common to “machined” surface implants. (The anodic oxidation surfaces are not Rutile Titanium; they are a mixture of anatase and amorphous titanium which are less dense and softer forms of titanium).

A. The first experimentation with this Southern Enhanced surface was in 1992. After extensive validation it was put into widespread clinical use in 1997. It is achieved by a subtractive process in which specifically sized and shaped, sharp cornered, Alumina particles (Al₂O₃) are blasted with decontaminated air onto the implant surface with controlled pressure, displacement and time. Every batch of Al₂O₃ particles are subject to SEM analysis to ensure consistent shape and size.

B. The particle size of 110μm is supported by the work of Soskalne (Israel) and Wennerberg (Sweden) on the one hand and Ronald (Norway) on the other. Based on their research, greatest bone to titanium bond strength is obtained with abrasion particles greater than 75μm and less than 170μm. This partly explains why the 250μm particles used to produce the SLA surface, need a secondary acid etching process as the 250μm particles alone, leave too coarse a surface. Astra wisely use 110μm particles for producing their rough surfaces, but their particles are of titanium oxide and not Alumina.

C. Szmuclier-Moncler has analyzed and compared the popular implant surfaces in publications and a presentation at the AO, San Francisco in 2004. He reports that the Southern Surface is **remarkably consistent and free of contaminants** whilst those that are acid etched or oxidized are shown to be highly variable. It is extremely difficult to control acid etching and oxidation in an industrial manufacturing process. This is one reason why Southern does not use acid etching or anodic oxidation.

D. There seems to be consensus in the literature that “moderately rough” surfaces have no great risks for the patient and are therefore safe to use. Moderately rough was defined by Albrektsson as Sₐ = 1.0 to 2.0μm (applied Osseointegration Research Vol. 5, 2006) and our surface has Sₐ = 1.43 in one published study and Sₐ = 1.55 on implants recently analyzed by Prof Ann Wennerberg in 2006.

Dr Måls Wikström, Chief of Clinics, Branemark Center Goteborg, in 2007 concluded that the Southern surface is **one of the three best documented moderately rough surfaces on the market.**

Prof Alan Payne, Oral Implantology Research Group, University of Otago, is conducting Randomized Clinical Trials (RCTs) involving Southern Implants’ rough surface. 2008 signified the 10 year follow-up in the mandibles and 7 year follow-up in the Maxilla. The 8 year and 5 year results are published in Cochrone Collaboration reports. Standardized radiographs show marginal bone loss of all the implants to be well within the criteria set by Albrektsson & Zarb 1993, 1998 as well as Fourmousis & Bragger 1999.

In conclusion, it is a well documented surface with a consistent manufacturing process and holds extremely low risk.
Precision Attachments

Ball Attachments & Clips

<table>
<thead>
<tr>
<th>Ø3.1mm</th>
<th>Castable ball</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP2</td>
<td>M2 OR M2</td>
</tr>
<tr>
<td>TP2-S</td>
<td>M2 OR M1.4</td>
</tr>
<tr>
<td>TP1</td>
<td>US OR TPA1</td>
</tr>
<tr>
<td>TPA1</td>
<td>OR TPA2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ø2.25mm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ6A 1206C</td>
<td>Removable male Patent</td>
</tr>
<tr>
<td>ZZ6A 1205C</td>
<td>Preci-castable ball</td>
</tr>
<tr>
<td>ZZ6A 1203C</td>
<td>Patent for soldering</td>
</tr>
<tr>
<td>ZZ6A 1201D</td>
<td>Analogue</td>
</tr>
<tr>
<td>ZZ7A 1232</td>
<td>Reduced retention</td>
</tr>
<tr>
<td>ZZ6A 1231</td>
<td>Normal retention</td>
</tr>
<tr>
<td>ZZ6A 1233</td>
<td>Increased retention</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ø3.15mm</th>
<th>Chrome Cobalt ball</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP1</td>
<td>M1.4 OR OR</td>
</tr>
<tr>
<td>CCP1-1.4</td>
<td></td>
</tr>
</tbody>
</table>

Bars

Preci Horix Bars (Original Hader Product) Ø1.8mm

<table>
<thead>
<tr>
<th>ZZ6A 1704B</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ6A 1106</td>
<td>GDC1</td>
</tr>
<tr>
<td>ZZ6A 1802B</td>
<td>Inox</td>
</tr>
<tr>
<td>ZZ6A 1805B</td>
<td>Gold</td>
</tr>
</tbody>
</table>

Round Bars

<table>
<thead>
<tr>
<th>Ø2.0mm</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø1.8mm</td>
<td>Gold</td>
</tr>
</tbody>
</table>

Housing

<table>
<thead>
<tr>
<th>ZZ6A 1706B</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ6A 1806B</td>
<td>Gold</td>
</tr>
<tr>
<td>ZZ6A 1809B</td>
<td>Inox</td>
</tr>
</tbody>
</table>
SFI Bar

The SFI-Bar is the innovative bar solution for removable dentures on implants in both upper and lower jaws. The bar ensures stress-free hold of the prosthesis on the implants, thus increasing the patient’s comfort. All components are prefabricated. Therefore problems associated with soldering and welding conventional bars are eliminated completely.

Moreover due to its simplicity the SFI-Bar can be easily and efficiently adapted and placed aspiration-safe to the individual patient’s mouth situation chair side. Its functional design ensures great flexibility and is indicated in most cases. With the appropriate abutments, the SFI-Bar can be used with almost any implant system.

The SFI-Bar 2-implant and 4-implant are the standard versions. These can be upgraded with the SFI-Bar Add-on Kit (0500 0668) to solutions for 3, 5 and 6 implants.

* Tension free, excellent and stable fit.
* Simply ingenious, thanks to telescope-like connections and individual shortening.
* Possible to fit the SFI-Bar 2-implant directly in the mouth.

Accessories

CM 0500 0337
CM 0500 0338
CM 0500 0339
CM 0500 0383
CM 0500 0384
CM 0500 0385
CM 0500 0386
CM 0500 0382
CM 0500 0383
CM 0500 0384
CM 0500 0385
CM 0500 0386
CM 0500 0382
CM 0500 0383
CM 0500 0384
CM 0500 0385
CM 0500 0386
CM 0500 0382
CM 0500 0383
CM 0500 0384
CM 0500 0385
CM 0500 0386
CM 0500 0382
CM 0500 0383
CM 0500 0384
CM 0500 0385
CM 0500 0386
CM 0500 0382
CM 0500 0383
CM 0500 0384
CM 0500 0385
CM 0500 0386
CM 0500 0382
CM 0500 0383
CM 0500 0384
CM 0500 0385
CM 0500 0386
CM 0500 0382
CM 0500 0383
CM 0500 0384
CM 0500 0385
CM 0500 0386

The SFI Bar System and all its accessories are only sold through Southern Implants in South Africa. For more information call Southern Implants.
Cleaning & Sterilization Procedure Guidelines

<table>
<thead>
<tr>
<th>Components</th>
<th>Surgical Drills</th>
<th>Surgical and Prosthetic Tools</th>
<th>Surgical and Prosthetic Trays</th>
<th>Torque Wrenches / Ratchet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warnings</td>
<td>Never use blunt or damaged tools.</td>
<td>Never use blunt or damaged tools.</td>
<td>Do not expose to temperatures higher than 140°C.</td>
<td>Do not expose to temperatures higher than 160°C.</td>
</tr>
<tr>
<td>Limitations on Reprocessing</td>
<td>Taper Drills and Pilot Drills - 40 times. Trephine Drills - 10 times.</td>
<td>Drivers and General Instruments - Repeated processing has minimal effect. Bone Mills - 15 times. Taps, Tissue Punch, Osteotomes, counter bores, Thread cutters - 40 times.</td>
<td>Repeated processing has minimal effect on these trays.</td>
<td>500 times or 3 years, whichever is reached first (service can extend life, but not indefinitely).</td>
</tr>
</tbody>
</table>

Instructions

Point of use:
- Remove excess soil with running water.
- Remove excess soil with running water.
- Remove excess soil with disposable cloth / paper wipe.
- Remove excess soil with running water.

Containment and Transportation:
- No Particular Requirements: It is recommended that instruments are cleaned and dried as soon as it is reasonably practical following use.

Preparation for cleaning
- Disassembly from Handpiece.
- Disassembly from Handpiece.
- No Particular Requirement.
- Remove any connecting parts.

Cleaning: Automated
- Rinse with lukewarm water for 3 minutes. Remove the hardened soil with a soft bristle brush. Sonicate for 20 minutes in an ultrasonic cleaner using a detergent suitable for surgical instruments (SteriTech Instrument Cleaner - 5% dilution). Rinse in running water and dry.
- Rinse with lukewarm water for 3 minutes. Remove the hardened soil with a soft bristle brush. Sonicate for 20 minutes in an ultrasonic cleaner using a detergent suitable for surgical instruments (SteriTech Instrument Cleaner - 5% dilution). Rinse in running water and dry.
- Rinse in lukewarm water and remove soil with a soft bristle brush and enzymatic detergent. Rinse off with lukewarm water and dry.
- Rinse with lukewarm water for 3 minutes. Remove the hardened soil with a soft bristle brush. Sonicate for 20 minutes in an ultrasonic cleaner using a detergent suitable for surgical instruments (SteriTech Instrument Cleaner - 5% dilution). Rinse in running water and dry.

Cleaning: Manual
- Manual cleaning is not practical and is therefore not advised.

Disinfection
- If detergent is not a high level disinfectant: Sonicate / rinse with 70 % ethanol for 5 minutes.
- If detergent is not a high level disinfectant: Sonicate / rinse with 70 % ethanol for 5 minutes.
- Trays can be wiped / sprayed down with 70 % ethanol.
- If detergent is not a high level disinfectant: Sonicate / rinse with 70 % ethanol for 5 minutes.

Drying
- Allow components to dry completely before sterilizing.

Maintenance
- Damaged or blunt instruments should not be used.

Inspection and further Testing
- Inspect all instruments visually for damage and bluntness.
- Check whether the ratchet mechanism is working smoothly.

Packaging
- Single: A standard packaging material may be used. Ensure that the pack is large enough to contain the instrument without stressing the seal. (Recommendation: Use a packaging system that conforms to ISO 11607).
- In sets: Instruments can be loaded into dedicated instrument trays before sterilization. Place the tray in an appropriate sterilization bag.

Sterilization
- Autoclave at 121 °C (250 °F) for a minimum of 30 minutes.

Storage
- Never store instruments while they are still wet or moist. This will result in corrosion and degradation of cutting edges.

Additional Information
- When sterilizing multiple instruments in one autoclave cycle, ensure the the sterilizer's maximum load is not exceeded. Refer to sterilizer's instructions for use. Ascertain the size of the instrument trays prior to sterilization.
Complimentary Manuals & Instructions:

Tri-Nex Product Catalogue ... CAT-2004
IT Product Catalogue ... CAT-2005
Patient Information Brochure ... CAT-2022
Overdenture Information Brochure .. CAT-2023
Zygomatic Information Brochure .. CAT-2025
Instrument Catalogue ... CAT-2006
Prosthetic & Laboratory Manual ... CAT-2001
Cranio Facial Reconstruction .. CAT-2036
Orthodontic Catalogue ... CAT-2017
TMJ Prosthesis Catalogue ... CAT-2018
One Piece Implants ... CAT-1008
Finger Implants Catalogue .. CAT-1083
First & Secondary Stage Surgery Manual ... CAT-2024
Instructions for use ... PRO-6038

Labeling Symbols:

The following symbols are used on our packaging labels and they indicate the following:

1: “Use by”
2: “Batch code”
3: “Do not reuse”
4: “Sterilization using Irradiation”
5: “Caution”
6: “Consult instruction for use”
7: CE mark